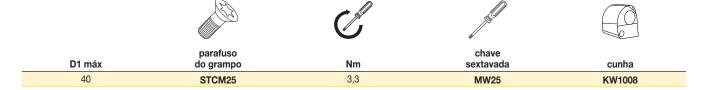
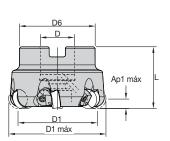


- Taxa de remoção de material superior devido a fresas de passo fino.
- Sistema seguro de fixação que melhora a estabilidade e confiança do processo.
- Função de refrigeração a ar efetiva. Melhor fluxo do cavaco e melhor vida útil da ferramenta do inserto.



Fresas de topo de hastes cilíndricas

número para	código do produto	D1 máx	D1	n		12	Ap1 máx	7	kgs	RPM máx	inserto 1
pedido	produto	Dilliax	וט			LZ	Aprillax		rys	IIIax	IIISEI LO I
5704053	KCRA40Z03A32RN12	40	27	32	110	24	6,4	3	0,67	27700	RNGN120400



- A melhor escolha para fresamento de canto de ligas resistentes a altas temperaturas.
- Taxa de remoção de material superior devido a fresas de passo fino.
- Sistema seguro de fixação que melhora a estabilidade e confiança do processo.
- Função de refrigeração a ar efetiva. Melhor fluxo do cavaco e melhor vida útil da ferramenta do inserto.

Fresas de facear

número para pedido	código do produto	D1 máx	D1	D	D6	L	Ap1 máx	z	kgs	RPM máx	inserto 1
6002128	KCRA40Z04S22RN12	40	27	22	38	40	6,4	4	0,23	23700	RNGN120400
5704054	KCRA50Z04S22RN12	50	37	22	42	40	6,4	4	0,37	23700	RNGN120400
5704055	KCRA50Z06S22RN12	50	37	22	42	40	6,4	6	0,34	23700	RNGN120400
5704056	KCRA63Z06S22RN12	63	50	22	49	40	6,4	6	0,59	20400	RNGN120400
5704057	KCRA63Z09S22RN12	63	50	22	49	40	6,4	9	0,56	20400	RNGN120400
5704058	KCRA80Z08S27RN12	80	67	27	60	50	6,4	8	1,19	17600	RNGN120400

D1 máx	parafuso de fixação com cabeça	parafuso de montagem	parafuso do grampo	Nm	chave sextavada	cunha
40	_	KLSSM22-39-CG	STCM25	3,3	MW25	KW1008
50	MS1242	_	STCM25	3,3	MW25	KW1008
63	MS1242	-	STCM25	3,3	MW25	KW1008
80	MS1556	_	STCM25	3,3	MW25	KW1008

Guia de seleção de insertos

	le	agem ve tria leve)		agem ral		agem ada reforçada)	
Grupo		ncia ao gaste	◄		tenac	idade	
de material	Geometria	Classe	Geometria	Classe	Geometria	Classe	
P1-P2	-	-	-	-	-	-	
P3-P4			-	-	-	-	
P5-P6			-	-	-	-	
M1-M2			-	-	-	-	
M3	-	-	-	-	-	-	
K1-K2	-	-	-	-	-	-	
K3	-	-	-	-	-	-	
N1-N2	-	-	-	-	-	-	
N3	-	-	-	-	-	-	
S1-S2	.EGN KYS30		.EGN	KYS30	.TGN	KYS30	
S 3	.EGN	KYSP30	.EGN	KYSP30	.TGN	KYSP30	
S 4	-	-	-	-	-	-	
H1	-	-	-	-	-	-	

Insertos intercambiáveis

- A geometria -EGN é a melhor escolha para situações instáveis e/ou forças de corte inferiores.
- A geometria -TGN possui uma aresta de corte mais robusta.
- Utilize o KYSP30 como a melhor escolha para os materiais do grupo S3, as ligas baseadas em Ni.

- primeira opção
- opção alternativa

RNGN1204

código do produto	D	s	KYS30	YSP3
RNGN120400EGN	12,70	4,76	•	•
RNGN120400TGN	12,70	4,76		•

NOTA: A — Use essas ferramentas com os equipamentos e máquinas apropriados. As máquinas devem ser enclausuradas por razões de segurança: Espera-se cavacos de fluxo quente e ruídos elevados, os quais são comuns durante o processo de fresamento.

B — Use somente fluxo de ar como método de refrigeração.
C — RPMs maiores estão envolvidos; use o porta-ferramenta equilibrado para obter uma maior vida útil da ferramenta e uma operação mais segura.

Avanços iniciais recomendados [mm]

Usinagem leve	Usinagem geral	Usinagem pesada
------------------	-------------------	-----------------

A uma profundidade de corte (ap) de 6,35mm

Geometria do					Avanço				ndado (fz nento ra							Geometria do
Inserto	10%			20%			30%			40%				50–100%	Inserto	
.EGN	0,08	0,09	0,11	0,06	0,07	0,09	0,06	0,06	0,07	0,05	0,06	0,07	0,05	0,06	0,07	.EGN
.TGN 0,13 0,17 0,19 0,09 0,13 0,14 0,08 0,11 0,13 0,08 0,10 0,12 0,08 0,10 0,12									.TGN							

A uma profundidade de corte (ap) de 3,00

Geometria do	Avanço por faca inicial recomendado (fz = mm/faca) em relação à % de engajamento radial (ae)														Geometria do	
Inserto	10%			20%			30%			40%			50-100%			Inserto
.EGN	0,10	0,11	0,13	0,07	0,08	0,10	0,07	0,07	0,09	0,06	0,07	0,08	0,06	0,07	0,08	.EGN
TGN 0,15 0,20 0,23 0,11 0,15 0,17 0,10 0,13 0,15 0,09 0,12 0,14 0,09								0,09	0,12	0,14	.TGN					

A uma profundidade de corte (ap) de 1,50

Geometria do					Avanço				idado (fz nento rac		aca) em					Geometria do
Inserto		10%			20%		30%		40%			50-100%			Inserto	
.EGN	0,13								0,11	0,08	0,09	0,11	.EGN			
.TGN	0,19 0,26 0,30 0,15 0,19 0,22 0,13 0,17 0,19 0,12 0,16 0,18 0,12 0,15 0,18											.TGN				

A uma profundidade de corte (ap) de 0,75

Geometria do					Avanço				idado (fz nento rac							Geometria do
Inserto	10%			20%			30%			40%			!	50-100%	Inserto	
.EGN	0,18	0,20	0,24	0,13	0,15	0,18	0,12	0,13	0,16	0,11	0,12	0,15	0,11	0,12	0,14	.EGN
.TGN	0,27	0,36	0,41	0,20	0,27	0,31	0,17	0,23	0,27	0,16	0,22	0,25	0,16	0,21	0,24	.TGN

NOTA: Use os valores de "usinagem leve" como taxa de avanço inicial.

Consulte as páginas X22–X37 para velocidades iniciais recomendadas.

Guia de montagem do inserto

Aviso: Perigo de corte

Aviso: Superfícies quentes

Não exceda o valor máximo de RPM

Instruções de montagem

Leia atentamente todas

as instruções

Monte o parafuso STCM-9 à cunha KW1008, 1 a 1 1/2 de volta.

2 Montagem de cunha/parafuso.

Instale a montagem de cunha/parafuso ao corpo da fresa, mas mantenha uma folga de montagem para a instalação do inserto.

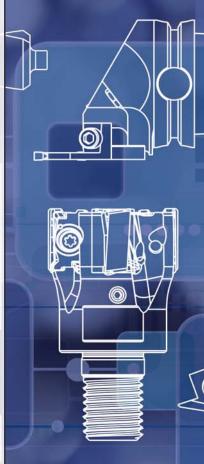
Deslize o inserto RNGN12... até o encaixe e faça o torque da montagem de cunha/inserto em 3,5 Nm (31 pol./lbs). Repita o processo para cada alojamento.

O NOVO SABE PROCURAR

A procura por uma ferramenta foi melhorada através de funções de Aconselhamento e seleção do NOVO™, economizando tempo e dinheiro.

SUGERIR

Utiliza uma abordagem baseada em regras para fornecer recomendações de ferramenta de corte:


- Definir recurso de usinagem (fresamento de face, canais, furo cego etc.)
- Aplicar requisitos de limitação (geometria, material, tolerância etc.)
- Definir sequência de usinagem (operações de etapa única ou múltiplas, desbaste e acabamento etc.)
- · Receber os resultados em ranking

SELECIONAR

Um método de selecionar ferramenta de corte de uma estrutura em árvore por meio de uma busca hierárquica ou paramétrica:

- Se você sabe qual é produto que está procurando, uma busca rápida pode ser feita somente com o número de catálogo ou descrição do produto.
- Filtros inteligentes reduzem significativamente a quantidade de potenciais soluções de ferramental.
- Após a ferramenta ter sido selecionada, o NOVO também fornece opções de itens de corte e adaptação que combinam com a sua solução.

O NOVO pode garantir que você tenha as ferramentas certas no seu maquinário, na sequência certa. Resultando em execução perfeita que acelera todos os trabalhos e maximiza todos os turnos. **kennametal.com/novo**

Fresas para insertos cerâmicos

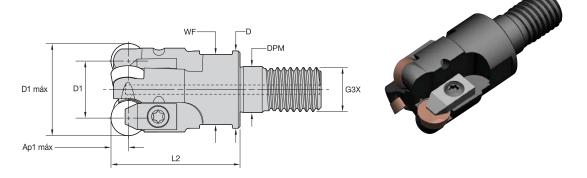
Aplicação principal

A plataforma de fresamento de cerâmica Kennametal foi projetada especificamente para a usinagem de ligas resistentes a altas temperaturas, série PH, aço inoxidável e materiais endurecidos. Com excelente produtividade, por meio da redução considerável de tempo de usinagem, as cerâmicas da Kennametal podem trabalhar mais de dez vezes mais rápido do que as classes de metal duro similares.

Características e benefícios

Produtividade imbatível

- Projetada para proporcionar taxas de remoção de material (MRR) e produtividade excepcionais em ligas à base de níquel e/ou cobalto, Stellites[®], aço inoxidável e séries PH por meio de usinagem de alta velocidade (HSM).
- Alta precisão de batimentos axial e radial.
- Bolsão de cavaco e tolerância da espessura do inserto melhorados para aumentar a performance total.
- O novo projeto do sistema de fixação proporciona maior vida útil para as peças de reposição, maior confiabilidade e maior RPM.

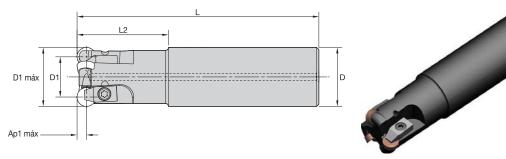

Aplicação e disponibilidade

- Três classes e três tamanhos de insertos disponíveis para abranger uma ampla gama de aplicações.
- Ampla gama de diâmetros com fresas de topo e Screw-On, a partir de 16mm de diâmetro.
- Maior folga nas fresas para capacidades de rampa superiores.
- Opção de refrigeração interna em todas as fresas. Somente para uso com ar.

- Para a usinagem de ligas resistentes a altas temperaturas, PH inoxidável, aços inoxidáveis e materiais endurecidos.
- Excelente produtividade por meio da redução considerável do tempo de usinagem.
- Recursos de fresamento de face, de cavidade e de rampa.
- Fornecimento de refrigerante interno somente a ar.

Fresas de topo Screw-On

número pa pedido	ara código do produto	D1 máx	D1	D	DPM	G3X	L2	WF	Ap1 máx	z	ângulo máximo de rampa	kgs	RPM máx	inserto 1
4052782	KIPR020RP09MF02	20	11	18	10,5	M10	30	14	4,8	2	13.0°	0,05	23040	RP_N0903
4052781	KIPR020RP06MF03	20	14	18	10,5	M10	30	14	3,2	3	10.0°	0,05	33325	RP_N0602
4052843	KIPR025RP09MF03	25	16	21	12,5	M12	35	18	4,8	3	8.0°	0,08	20610	RP_N0903
3101753	KIPR032RP12MF03	32	19	29	17,0	M16	45	22	6,3	3	4.2°	0,19	20420	RP_N1204


		parafuso		chave	chave
D1 máx	grampo	do grampo	Nm	Torx	Torx
20	KCI1	191.924	1,9	DT9	_
20	KCI2	191.725	3,5	DT15	-
25	KCI2	191.725	3,5	DT15	-
32	KCI3M	193 409	6.0	_	TTP20

- Para a usinagem de ligas resistentes a altas temperaturas, PH inoxidável, aços inoxidáveis e materiais endurecidos.
- Excelente produtividade por meio da redução considerável do tempo de usinagem.
- Recursos de fresamento de face, de cavidade e de rampa.
- Fornecimento de refrigerante interno somente a ar.

Fresas de topo de hastes cilíndricas

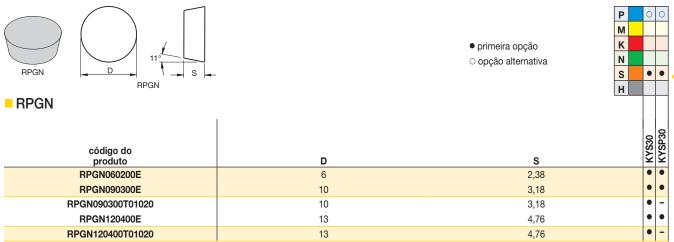
número para pedido	código do produto	D1 máx	D1	D	L	L2	Ap1 máx	z	ângulo máximo de rampa	kgs	RPM máx	inserto 1
3617418	KIPR016RP06CF02	16	10	16	75	26	3,2	2	14.0°	0,10	37260	RP_N0602
4052780	KIPR020RP09CF02	20	11	20	82	31	4,8	2	13.0°	0,16	23040	RP_N0903
3617416	KIPR020RP06CF03	20	14	20	82	31	3,2	3	10.0°	0,17	33325	RP_N0602
3617415	KIPR025RP09CF03	25	16	25	96	39	4,8	3	8.0°	0,30	20610	RP_N0903
3101754	KIPR032RP12CF03	32	20	32	110	50	6,3	3	4.2°	0,56	20420	RP_N1204
3101755	KIPR040RP12CF04	40	27	32	110	49	6,3	4	2.9°	0,62	18260	RP_N1204

D1 máx	grampo	parafuso do grampo	Nm	chave Torx	chave Torx
16	KCI1	KCI1	1,9	DT9	_
20	KCI1	KCI1	1,9	DT9	_
20	KCI2	KCI2	3,5	DT15	_
25	KCI2	KCI2	3,5	DT15	_
32	KCI3M	KCI3M	6,0	-	TTP20
40	KCI3M	KCI3M	6,0	-	TTP20

Guia de seleção de insertos

RPGN06... Ligas à alta temperatura

	Usina lev (Geomet	ve ria leve)	Usina ge		Usina pes (Geometria	ada
	resistê desg		•		tenac	idade
Grupo de material	Geometria	Classe	Geometria	Classe	Geometria	Classe
P1-P2	-	_	-	_	-	-
P3-P4	-	-	_	-	-	-
P5-P6	E	KYSP30	E	KYSP30	E	KYSP30
M1-M2	-	-	_	-	-	-
M3	-	-	_	ı	-	ı
K1-K2	-	-	_	ı	-	-
К3	-	-	_	ı	-	ı
N1-N2	-	-	_	ı	-	1
N3	-	-	_	ı	-	ı
S1-S2	E	KYS30	E	KYS30	E	KYS30
S 3	E	KYS30	E	KYS30	E	KYS30
S 4	-	_	_	_	-	-
H1	_	-	_	_	-	_


RPGN09... Ligas à alta temperatura

	,,,, _, 9∝	- a aa				
	Usina let (Geomet	ve	Usina ge		Usina pes (Geometria	ada
	resistê desg		•	-	tenac	idade
Grupo de material	Geometria	Classe	Geometria	Classe	Geometria	Classe
P1-P2	-	-	-	_	-	-
P3-P4	-	-	-	-	-	-
P5-P6	E	KYSP30	E	KYSP30	E	KYSP30
M1-M2	-	_	-	-	-	-
M3	-	-	-	-	-	-
K1-K2	-	-	_	_	-	-
К3	-	-	-	-	-	-
N1-N2	-	-	-	-	-	-
N3	-	-	_	_	-	-
S1-S2	E	KYS30	E	KYS30	T	KYS30
S3	E	KYS30	T	KYS30	T	KYS30
S4	-	-	_	-	-	-
H1	_	_	_	_	_	_

RPGN12 .. Ligas à alta temperatura

111 01111	<u>9</u> 4	o a ana	temper	aturu		
	Usina let (Geomet	ve	Usina ge		Usina pes (Geometria	ada
	resistê desg		-		tenac	idade
Grupo de material	Geometria	Classe	Geometria	Classe	Geometria	Classe
P1-P2	_	-	-	-	-	-
P3-P4	-	-	_	-	-	-
P5-P6	Е	KYSP30	Е	KYSP30	Е	KYSP30
M1-M2	-	-	-	-	-	-
M3	-	_	_	_	-	-
K1-K2	ı	-	_	-	-	-
K3	-	_	_	_	-	-
N1-N2	-	_	_	_	-	-
N3	-	-	_	-	-	-
S1-S2	E	KYS30	Е	KYS30	T	KYS30
S3	E	KYS30	T	KYS30	T	KYS30
S4	-	-	_	-	-	-
H1	_	_	_	_	-	-

Insertos cerâmicos intercambiáveis • KIPR

NOTA: A — Use essas ferramentas com os equipamentos e máquinas apropriados. As máquinas devem ser enclausuradas por razões de segurança: Espera-se cavacos de fluxo quente e ruídos elevados, os quais são comuns durante o processo de fresamento.

B — Use somente fluxo de ar como método de refrigeração.
 C — RPMs maiores estão envolvidos; use o porta-ferramenta equilibrado para obter uma maior vida útil da ferramenta e uma operação mais segura.
 D — Considere o aumento do fz em usinagem pesada quando um Ap menor for aplicado.

Fresa de cópia

Avanços iniciais recomendados [mm] • RPGN06...

Usinagem Usinagem Usinagem leve geral pesada

A uma profundidade de corte (ap) de 3,18

Geometria do					Avanço			recomen engajan			aca) em					Geometria do
Inserto		10%			20%			30%			40%			50-100%	,)	Inserto
E	0,12	0,13	0,17	0,09	0,10	0,13	0,08	0,09	0,11	0,07	0,08	0,10	0,07	0,08	0,10	E

A uma profundidade de corte (ap) de 1,59

Geometria do					Avanço	por faca relação										Geometria do
Inserto		relação à % de engajamento radial (ae) 10% 20% 30% 40% 50-100%														Inserto
E	0,14	0.15	0,20	0,10	0.11	0,15	0,09	0.10	0,13	0,09	0.09	0,12	0,08	0.09	0,12	E

A uma profundidade de corte (ap) de 0,79

Geometria do					Avanço				idado (fz nento rac							Geometria do
Inserto		10%			20%			30%			40%			50–100%)	Inserto
E	0,18	0,20	0,26	0,14	0,15	0,19	0,12	0,13	0,17	0,11	0,12	0,16	0,11	0,12	0,15	E

A uma profundidade de corte (ap) de 0,40

Geometria do					Avanço	por faca relação			idado (fz nento ra		aca) em					Geometria do
Inserto		10% 20% 30% 40% 50–100											50-100%	D	Inserto	
E	0,25	0,27	0,35	0,19	0,20	0,26	0,16	0,18	0,23	0,15	0,17	0,22	0,15	0,16	0,21	E

Avanços iniciais recomendados [mm] • RPGN09...

A uma profundidade de corte (ap) de 4,76

Geometria do					Avanço	por faca relação		ecomen engajan								Geometria do
Inserto		10%			20%			30%			40%			50-100%	D	Inserto
E	0,12	0,13	0,17	0,09	0,10	0,13	0,08	0,09	0,11	0,07	0,08	0,10	0,07	0,08	0,10	E
T	0,17	0,20	0,26	0,13	0,15	0,19	0,11	0,13	0,17	0,10	0,12	0,16	0,10	0,12	0,15	Т

A uma profundidade de corte (ap) de 2,38

Geometria do					Avanço				ndado (fz nento rac							Geometria do
Inserto		10%			20%			30%			40%		,	50-100%	, D	Inserto
E	0,14	0,15	0,20	0,10	0,11	0,15	0,09	0,10	0,13	0,09	0,09	0,12	0,08	0,09	0,12	E
T	0,20	0,24	0,30	0,15	0,18	0,22	0,13	0,15	0,19	0,12	0,14	0,18	0,12	0,14	0,18	Т

A uma profundidade de corte (ap) de 1,19

Geometria do					Avanço				ndado (fz nento ra							Geometria do
Inserto		10%			20%			30%			40%			50-100%	D	Inserto
E	0,18	0,20	0,26	0,14	0,15	0,19	0,12	0,13	0,17	0,11	0,12	0,16	0,11	0,12	0,15	E
T	0.26	0.31	0.39	0.19	0.23	0.29	0.17	0.20	0.25	0.16	0.19	0.24	0.15	0.19	0.23	Т

A uma profundidade de corte (ap) de 0,60

Geometria do	Avanço por faca inicial recomendado (fz = mm/faca) em relação à % de engajamento radial (ae)															Geometria do	
Inserto		10%		20%			30%			40%			50-100%			Inserto	
E	0,25	0,27	0,35	0,19	0,20	0,26	0,16	0,18	0,23	0,15	0,17	0,22	0,15	0,16	0,21	E	
T	0,35	0,42	0,53	0,26	0,32	0,40	0,23	0,28	0,35	0,21	0,26	0,32	0,21	0,25	0,32	T	

NOTA: Use os valores de "usinagem leve" como taxa de avanço inicial. Consulte as páginas X22–X37 para velocidades iniciais recomendadas.

Avanços iniciais recomendados [mm] • RPGN12...

Usinagem	Usinagem	Usinagem
leve	geral	pesada
1000	gerai	pesada

A uma profundidade de corte (ap) de 6,35

Geometria do	Avanço por faca inicial recomendado (fz = mm/faca) em Geometria do relação à % de engajamento radial (ae)															Geometria do
Inserto	10%			20%			30%			40%			50-100%			Inserto
E	0,12	0,13	0,17	0,09	0,10	0,13	0,08	0,09	0,11	0,07	0,08	0,10	0,07	0,08	0,10	E
Т	0,17	0,26	0,29	0,13	0,20	0,22	0,11	0,17	0,19	0,10	0,16	0,18	0,10	0,16	0,17	T

A uma profundidade de corte (ap) de 3,18

Geometria do	Avanço por faca inicial recomendado (fz = mm/faca) em relação à % de engajamento radial (ae)															Geometria do
Inserto		10%		20%			30%			40%			50-100%			Inserto
E	0,14	0,15	0,20	0,10	0,11	0,15	0,09	0,10	0,13	0,09	0,09	0,12	0,08	0,09	0,12	E
T	0,20	0,31	0,33	0,15	0,23	0,25	0,13	0,20	0,22	0,12	0,19	0,20	0,12	0,18	0,20	Т

A uma profundidade de corte (ap) de 1,59

Geometria do	Avanço por faca inicial recomendado (fz = mm/faca) em relação à % de engajamento radial (ae)															Geometria do
Inserto		10%		20%			30%			40%			50-100%			Inserto
E	0,18	0,20	0,26	0,14	0,15	0,19	0,12	0,13	0,17	0,11	0,12	0,16	0,11	0,12	0,15	E
T	0,26	0,40	0,44	0,19	0,30	0,33	0,17	0,26	0,29	0,16	0,24	0,27	0,15	0,24	0,26	T

A uma profundidade de corte (ap) de 0,79

Geometria do	Avanço por faca inicial recomendado (fz = mm/faca) em relação à % de engajamento radial (ae)															Geometria do
Inserto		10%		20%			30%			40%			50-100%			Inserto
E	0,25	0,27	0,35	0,19	0,20	0,26	0,16	0,18	0,23	0,15	0,17	0,22	0,15	0,16	0,21	E
Т	0,35	0,55	0,60	0,26	0,41	0,45	0,23	0,36	0,39	0,21	0,33	0,37	0,21	0,33	0,36	Т

NOTA: Use os valores de "usinagem leve" como taxa de avanço inicial.

Consulte as páginas X22–X37 para velocidades iniciais recomendadas.

